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Transformer Inference
From first principles to the current state of the art



Real-time user interactions require 
performant inference of large models

Chatbots: rapid response times 
after a user message 

Copilots: rapid, real time assistive 
applications with dynamically 

updated suggestions after a few 
keystrokes

High throughput batch inference: 
process several documents at once



Inference constraints affect all portions of the machine 
learning pipeline

Training: modern architectures like the 
Mixture of Experts model and grouped query 
attention (e.g., LLaMA 2) are designed for 
low inference 

Debugging and performance optimization: 
first principles can be both an important 
sanity check and roadmap to understand 
which optimizations are likely to work 

UX: understanding how LLM inference work 
can drive the development of real time user 
applications



Multiprocessors just load data 
and do math



A multiprocessor spends time on two operations

High bandwidth 
memory (HBM)

1. Loading data from GPU memory 
(also known as HBM, VRAM) to the 
computing unit’s SRAM and registers at 
a specified bandwidth

3.5 TB/s

A Streaming Multiprocessor (SM) 
in the NVIDIA H100 GPU, with four 
sub-cores

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html


A multiprocessor spends time on two operations

High bandwidth 
memory (HBM)

3.5 TB/s

A Streaming Multiprocessor (SM) 
in the NVIDIA H100 GPU, with four 
sub-cores

2. Mathematical 
operations, typically 
matrix-matrix or 
matrix-vector 
multiplies taking 
place in the tensor 
core

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html


A job is said to be memory bandwidth bound if memory 
cannot supply work at a rate to keep the processor busy 

High bandwidth 
memory (HBM)

F.relu(x) = max(0, x)[0.06, -0.01, 0.42, …]

Example: computing 
activation functions

HBM can only send so 
many bytes/second 
(the bandwidth)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html
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Example: computing 
activation functions

HBM can only send so 
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A job is said to be memory bandwidth bound if memory 
cannot supply work at a rate to keep the processor busy 

High bandwidth 
memory (HBM)

F.relu(x) = max(0, x)[0.09, -0.02, 0.54, …]

Example: computing 
activation functions

Data has not arrived 
yet, GPU is idle!

HBM can only send so 
many bytes/second 
(the bandwidth)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html


A job is said to be compute bound if it is 
bottlenecked by the speed of the processor

High bandwidth 
memory (HBM)

for _ in range(1000000): 
x *= x

[0.06, -0.01, 0.42, …]

Example: raise each number 
to the 1,000,000th power

Processor can only do 
so many floating point 
operations (FLOPs) 
every second

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html


Inference: a two stage workload



A transformer consists of the following 
block repeated many times, per token

ti

ti query 

ti key 

ti value 

ti query 

t1 key 
t2 key 

… 
ti-1 key 
ti key

t1 value 
t2 value 

… 
ti-1 value 
ti value

softmax( )
Compute the softmax with the query and all previous keys 

Then multiply by all previous values
Project up once and then down 
project to the original dimension

Compute projections 
into query, key and 

value



A transformer consists of the following 
block repeated many times, per token

ti

ti query 

ti key 

ti value 

ti query 

t1 key 
t2 key 

… 
ti-1 key 
ti key

t1 value 
t2 value 

… 
ti-1 value 
ti value

softmax( )
Compute the softmax with the query and all previous keys 

Then multiply by all previous values
Project up once and then down 
project to the original dimension

Compute projections 
into query, key and 

value

Keys and Values for all previous 
tokens will be reused. It’s a waste to 
recompute them, so store them in 
the KV cache. 



KV caching reduces the need for redundant 
computation

Token embedding

query key value

Project token embedding 
down to query, key, and 
value vectors 

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding 
down to query, key, and 
value vectors 

Project token embedding 
down to query, key, and 
value vectors 

Attention requires computing the dot product of the 
current query with all previous keys (and later values)

Inspired by: Generative LLM inference with Neuron 

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html
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KV caching reduces the need for redundant 
computation

Token embedding

query key value

Project token embedding 
down to query, key, and 
value vectors 

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding 
down to query, key, and 
value vectors 

Project token embedding 
down to query, key, and 
value vectors 

These values never change, so there’s no need to spend 
FLOPs recomputing them every time

Inspired by: Generative LLM inference with Neuron 

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html


model.generate() from HuggingFace



Prefill stage processes each token in parallel

All tokens are present during 
prefill, so we can process all 
tokens in the sequence in 
parallel 

•Populate KV cache 
•Generate probability for the 

first generated token

Source: Efficiently Scaling Transformer 
Inference, Pope et al 2022

https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf


Prefill stage processes each token in parallel
Input prompt 
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT



Input prompt 
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT

1 total forward pass ran

Prefill stage processes each token in parallel

Only 1 forward pass 
needed to process all 
input tokens in parallel



Decoding stage processes each token one by one

New token is appended to the input 



Decoding stage processes each token one by one

New token is appended to the input 

The forward pass is ran again



Input prompt 
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT

1 total forward pass ran

Decoding stage processes each token one by one



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You

KV cache: [2, 13, d_model] Logits: [vocab_size]

MPT

2 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take

KV cache: [2, 14, d_model] Logits: [vocab_size]

MPT

3 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them 

KV cache: [2, 15, d_model] Logits: [vocab_size]

MPT

4 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them to 

KV cache: [2, 16, d_model] Logits: [vocab_size]

MPT

5 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them to the 

KV cache: [2, 17, d_model] Logits: [vocab_size]

MPT

6 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them to the I.C.U.

KV cache: [2, 18, d_model] Logits: [vocab_size]

MPT

7 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them to the I.C.U. 🥁

KV cache: [2, 19, d_model] Logits: [vocab_size]

MPT

8 total forward passes ran



Decoding stage processes each token one by one
Input prompt 
“Where do you take someone injured in a hide and seek accident?” 
You take them to the I.C.U. 🥁

KV cache: [2, 19, d_model] Logits: [vocab_size]

MPT

8 total forward passes ran

Every single generated 
token triggered a forward 
pass through the model



A forward pass involves moving the weights 
from HBM to registers on the device

High bandwidth 
memory (HBM)



A forward pass involves moving the weights 
from HBM to registers on the device

High bandwidth 
memory (HBM)

Load (some) weights for layer 1



A forward pass involves moving the weights 
from HBM to registers on the device

High bandwidth 
memory (HBM)

Registers Registers

Registers Registers

Shared memory



This matters, since the rate at which 
bandwidth has been increasing is a lot slower 
than processor speeds



Prefill and decode end up having extremely 
different characteristics

Prefill loads the model once from 
memory to process all input 
tokens in parallel 

Decode loads the model up to 
max_new_tokens times, once for 
every single token generated. It 
only processes a single token.



Prefill and decode end up having extremely 
different characteristics

Compute bound 
High number of operations per byte read

Memory bound 
Low number of operations per byte read

Prefill loads the model once from 
memory to process all input 
tokens in parallel 

Decode loads the model up to 
max_new_tokens times, once for 
every single token generated. It 
only processes a single token.



Serving large models



Memory consists of parameters and the KV cache
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/
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• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB The workload has this many tokens

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

Each token has a head of size 128

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

The attention heads are concatenated, 
and there are 64 heads

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

We need a 2 because there’s 1 key and 1 value

Memory consists of parameters and the KV cache

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

There are 80 layers

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


Memory consists of parameters and the KV cache
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

140 GB + 11 GB = 151 GB >> 80 GB 

Model size 

70e9 params * 2 bytes/param = 140e9 bytes = 
140GB 

KV cache size 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes = 11 GB

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/


To reduce memory, we use tensor parallelism

GPU 0

GPU 1

GPU 2

GPU 3

GPU 5

GPU 4

GPU 6

GPU 7

W0

W1

W2

W3

W4

W5

W6

W7

Weights take up lots of memory, so shard them across GPUs

NVLink Interconnect

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[6]W[2] W

Column parallel shards the output dimension 
across GPUs out_features

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

Column parallel shards the output dimension 
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

x@W[0] x@W[1] x@W[2] x@W[3] x@W[4] x@W[5] x@W[6] x@W[7] all_gather

Column parallel shards the output dimension 
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

x @ W

Column parallel shards the output dimension 
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[0]

Row parallel divides the input dimension by 
GPUs out_features

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[0]

Row parallel divides the input dimension by 
GPUs out_features

xbatch_size

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[0]

Row parallel divides the input dimension by 
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0]

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[0]

Row parallel divides the input dimension by 
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0] x @ Wx @ Wx @ Wx @ Wx @ Wx @ Wx @ Wx @ W

all_reduce

Each GPU has a 
part of the result

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


W[0]

Row parallel divides the input dimension by 
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0] x @ W all_reduce

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


Megatron-LM cleverly combines these tricks, 
so there’s only one synchronization step

Column Parallel
Row Parallel

One single AllReduce

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf


Back-of-the-envelope inference 
arithmetic



Say we have 8x A100 40GB GPUs trying to 
run inference with Llama2-70B
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64



Numbers everyone should know
A100 fp16/bfloat16: 312e12 FLOPs/second (3 and then two 12s) 

A100 memory bandwidth: 1.5 TB/second 

H100 fp16/bfloat16: 1e15 FLOPs/second (a petaflop) 

H100 memory bandwidth: 3.3 TB/second (roughly double A100) 

NVLink interconnect: 300 GB/s



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.92s

There are 70e9 parameters. For a single 
token each one of them is involved at 
exactly one point in the matrix multiply. 
It does a single multiplication and an 
add (think a dot product).



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.92s

There are 512 tokens per 
sequence, and 32 sequences in 
the batch.



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s

Computation and memory loading 
are overlapped



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!



Calculating prefill on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time  

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 

So total time is:  

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!

Time to First Token (TTFT): how long a user waits before they receive a 
response to their query.



Calculating decoding time on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time, per output token  

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12 

So total time is:  

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.001s

We only spend 10% of the time doing actual math!

Memory load time (from before)  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s



Calculating decoding time on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time, per output token  

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12 

So total time is:  

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.001s

For 64, output tokens, 64 * 0.01s = 0.64s

Memory load time (from before)  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s



Calculating decoding time on A100
Let: 

• batch_size = 32 

• input_seq_len = 512 

• max_output_tokens = 64

FLOPS time, per output token  

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12 

So total time is:  

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.001s

For 64, output tokens, 64 * 0.01s = 0.64s.  

Prefill was done in ~0.9s. We processed 8x more tokens in just 
1.5x the time.

Memory load time (from before)  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s



Two numbers to bring these numbers closer to reality

High bandwidth 
memory (HBM)

Model FLOPs 
Utilization (MFU) 

Relative to how fast 
the accelerator 
claims to run, what 
percent of the 
FLOPs do we 
actually see when 
we run the model? 

Model Bandwidth 
Utilization (MBU) 

Relative to the 
advertised system 
bandwidth, what is 
the actual 
bandwidth realized?



Two numbers to bring these numbers closer to reality

High bandwidth 
memory (HBM)

Model FLOPs 
Utilization (MFU) 

Relative to how fast 
the accelerator 
claims to run, what 
percent of the 
FLOPs do we 
actually see when 
we run the model? 

Model Bandwidth 
Utilization (MBU) 

Relative to the 
advertised system 
bandwidth, what is 
the actual 
bandwidth realized?



Prefill vs. decode per-token latencies

160x difference, on A6000 GPU Source: SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills

https://arxiv.org/abs/2308.16369


Prefill vs. decode per-token latencies

OpenAI GPT-4 token pricing



Be careful about tokens/sec. If it 
includes input and output tokens, the 

metric could make you think your 
system is running a lot faster than it 

actually is.



Two metrics we care about: 

1. Time To First Token (TTFT): how long does 
it take before the first token is generated? 

2. Time Per Output Token (TPOT): how long 
does it take for each output token to be 
generated?



MBU numbers for Llama2-70B

Source: LLM Inference Performance Engineering: Best Practices

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices


Milliseconds are confusing…what do these numbers 
mean?

Time to first token: 4s 
Time per output token: 80ms



Milliseconds are confusing…what do these numbers 
mean?

Time to first token: 3s 
Time per output token: 46ms



Milliseconds are confusing…what do these numbers 
mean?

Time to first token: 1s 
Time per output token: 16ms

This is a North Star: it’s close to “Copilot” level functionality



Both of these metrics are important 
Example: optimize for decoding throughput by only 
running one sequence at a time

I have the fastest inference 
engine out there at 100 output 

tokens/second!
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Both of these metrics are important 
Example: optimize for decoding throughput by only running one 
sequence at a time

I have the fastest inference 
engine out there at 100 output 

tokens/second!
GPU 0

GPU 1

GPU 2

GPU 3

GPU 5

GPU 4

GPU 6

GPU 7

W1

W2

W3

W5

W6

W7

Inference runtime is 
capable of running 100 
output tokens/second, 
but only at batch size 1

S2S3S4S5

Request queue with sequences

S1

All these sequences are 
waiting in the queue, so 
time to first token will be 
very large



How do we speed this up?



Idea 1: reduce how much 
memory you need



Idea 1.1: make the KV cache smaller?

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf


Idea 1.1: make the KV cache smaller?

Grouped query attention: reduce the number of key and value heads 
to some multiple of the number of query heads. Produces negligible 
performance decrease for large (>2x reduction in inference cost)

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf


Idea 1.1: make the KV cache smaller?

Serve by partitioning each head on a different GPU

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf


Idea 1.1: make the KV cache smaller?
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 64

KV cache size (maximum) 

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 
32) ~= 11e9 bytes = 11 GB



Idea 1.1: make the KV cache smaller?
Let’s say we’re serving a 
Llama2-70B model with: 

• precision = fp16 

• d_model = 8192 

• n_layers = 80 

• batch_size = 4 

• input_seq_len = 1024 

• max_new_tokens = 32 

• head_size = 128 

• kv_n_heads = 8

KV cache size (maximum) 

80 * 2 * 2 bytes/param * 8 * 128 * 4 * (1024 + 32) 
~= 11e9 bytes ~= 1.3 GB

8x reduction!



Idea 1.2: how do we actually allocate?
How much memory is required for a request: 
how many total tokens will the generation 
take? 

Problem: fragmentation, which occurs from 
allocation and frees

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180


Idea 1.2: how do we actually allocate?

Tons of memory waste!
How much memory is required for a request: 
how many total tokens will the generation 
take? 

Problem: fragmentation, which occurs from 
allocation and frees

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180


Idea 1.2: how do we actually allocate?

• Map logical blocks 
to physical blocks 
on GPU RAM 

• Fix the block sizes, 
only allocate when 
necessary 

• If there are multiple 
blocks that come in 
with the same 
prompt, then 
increase the 
reference count of 
physical KV blocks

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180


Idea 1.2: how do we actually allocate?

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180


Idea 2: get a greater bang for 
your bytes by increasing the 
batch size



A first idea: naively take requests and run 
them through the model
Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?



What happens when the request is done?

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As a large language model I don’t know how but I

Evan </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Sure </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Rocky </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Batched LLM processing keeps these 
sequences idle, as the request latency 
becomes the maximum of all sequences in 
the batch.



What happens when the request is done?

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As a large language model I don’t know how but I

Evan </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Sure </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Rocky </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

There’s room for more requests…but we can’t serve them. 
IMPORTANT QUESTIONS CAN’T GET ANSWERED!

When will AGI be achieved internally at Databricks?



A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

Request Pool

Introduce the Orca scheduler 
1. Select the requests to run 

next.
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A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As

Evan

Sure

Rocky

Request Pool

Introduce the Orca scheduler 
1. Select the requests to run 

next. 
2. Run an iteration of the engine

model.forward(input_ids) model.run_step(ids)
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2. Run an iteration of the engine 
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A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.
As a

Request Pool

Introduce the Orca scheduler 
1. Select the requests to run 

next. 
2. Run an iteration of the engine 
3. Receive execution resultsWhen will AGI be achieved internally at Databricks?

KV cache evicted 
GPU memory freed



A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Request Pool

Introduce the Orca scheduler 
1. Select the requests to run 

next. 
2. Run an iteration of the engine 
3. Receive execution results

When will AGI be achieved internally at Databricks?
As a



Iteration level batching is a lot faster
• Reduced waiting time for a given request 
• High GPU utilization from large batch sizes 
• Less wasted computation from padding within a simple



Idea 3: speed up decoding by 
trying to decode more tokens in 
parallel



What if we decoded several tokens in parallel if 
the problem is decoding one token at a time?
Idea: train auxiliary models that can predict n tokens instead (not just 1 
token ahead)

Model 2 tokens 
ahead

3 tokens 
ahead

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

https://arxiv.org/abs/1811.03115
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Idea: train auxiliary models that can predict n tokens instead (not just 1 
token ahead)

Model 2 tokens 
ahead

3 tokens 
ahead

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

What if we decoded several tokens in parallel if 
the problem is decoding one token at a time?

https://arxiv.org/abs/1811.03115


Why does this make sense?

FLOPS time, per (>1) output token  

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12 

So total time is:  

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 
0.001s

Memory load time (from before)  

Total bytes: 2 * 70e9 = 140e9 

So total load time is:  

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Decoding several tokens at once reduces the 
number of forward passes that need to be ran 



Results

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

https://arxiv.org/abs/1811.03115


Take 2: training these are expensive, and 
not that accurate, so let’s try another model

Big Model

Cheap small model I’m really fast and small right

A cheap small model generates tokens



Take 2: training these are expensive, and 
not that accurate, so let’s try another model

Big Model

Cheap small model

I’m
really
fast
and

small
right

The big model verifies them in parallel

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf


Results

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf


Adding this makes sense…but not for high batch sizes

•FLOPs go up but… 
•You’re doing k times as much 

work, and at batch size b, an 
effective batch size of k * b might 
bring you into the compute 
bound regime 

•And that lots of that work is 
wasted, since you might be 
wrong

Credit: Abhi Venigalla


