
Linden Li
NeurIPS 2023

Transformer Inference
From first principles to the current state of the art

Real-time user interactions require
performant inference of large models

Chatbots: rapid response times
after a user message

Copilots: rapid, real time assistive
applications with dynamically

updated suggestions after a few
keystrokes

High throughput batch inference:
process several documents at once

Inference constraints affect all portions of the machine
learning pipeline

Training: modern architectures like the
Mixture of Experts model and grouped query
attention (e.g., LLaMA 2) are designed for
low inference

Debugging and performance optimization:
first principles can be both an important
sanity check and roadmap to understand
which optimizations are likely to work

UX: understanding how LLM inference work
can drive the development of real time user
applications

Multiprocessors just load data
and do math

A multiprocessor spends time on two operations

High bandwidth
memory (HBM)

1. Loading data from GPU memory
(also known as HBM, VRAM) to the
computing unit’s SRAM and registers at
a specified bandwidth

3.5 TB/s

A Streaming Multiprocessor (SM)
in the NVIDIA H100 GPU, with four
sub-cores

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A multiprocessor spends time on two operations

High bandwidth
memory (HBM)

3.5 TB/s

A Streaming Multiprocessor (SM)
in the NVIDIA H100 GPU, with four
sub-cores

2. Mathematical
operations, typically
matrix-matrix or
matrix-vector
multiplies taking
place in the tensor
core

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job is said to be memory bandwidth bound if memory
cannot supply work at a rate to keep the processor busy

High bandwidth
memory (HBM)

F.relu(x) = max(0, x)[0.06, -0.01, 0.42, …]

Example: computing
activation functions

HBM can only send so
many bytes/second
(the bandwidth)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job is said to be memory bandwidth bound if memory
cannot supply work at a rate to keep the processor busy

High bandwidth
memory (HBM)

F.relu(x) = max(0, x)
[0.06, -0.01, 0.42, …]

Example: computing
activation functions

HBM can only send so
many bytes/second
(the bandwidth)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job is said to be memory bandwidth bound if memory
cannot supply work at a rate to keep the processor busy

High bandwidth
memory (HBM)

F.relu(x) = max(0, x)[0.09, -0.02, 0.54, …]

Example: computing
activation functions

Data has not arrived
yet, GPU is idle!

HBM can only send so
many bytes/second
(the bandwidth)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job is said to be compute bound if it is
bottlenecked by the speed of the processor

High bandwidth
memory (HBM)

for _ in range(1000000):
x *= x

[0.06, -0.01, 0.42, …]

Example: raise each number
to the 1,000,000th power

Processor can only do
so many floating point
operations (FLOPs)
every second

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

Inference: a two stage workload

A transformer consists of the following
block repeated many times, per token

ti

ti query

ti key

ti value

ti query

t1 key
t2 key

…
ti-1 key
ti key

t1 value
t2 value

…
ti-1 value
ti value

softmax()
Compute the softmax with the query and all previous keys

Then multiply by all previous values
Project up once and then down
project to the original dimension

Compute projections
into query, key and

value

A transformer consists of the following
block repeated many times, per token

ti

ti query

ti key

ti value

ti query

t1 key
t2 key

…
ti-1 key
ti key

t1 value
t2 value

…
ti-1 value
ti value

softmax()
Compute the softmax with the query and all previous keys

Then multiply by all previous values
Project up once and then down
project to the original dimension

Compute projections
into query, key and

value

Keys and Values for all previous
tokens will be reused. It’s a waste to
recompute them, so store them in
the KV cache.

KV caching reduces the need for redundant
computation

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Project token embedding
down to query, key, and
value vectors

Attention requires computing the dot product of the
current query with all previous keys (and later values)

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Project token embedding
down to query, key, and
value vectors

query

Attention requires computing the dot product of the
current query with all previous keys (and later values)

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Project token embedding
down to query, key, and
value vectors

query

Attention requires computing the dot product of the
current query with all previous keys (and later values)

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Project token embedding
down to query, key, and
value vectors

query

Attention requires computing the dot product of the
current query with all previous keys (and later values)

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Welcome to NeurIPS
Token embedding

query key value

Token embedding

query key value

Project token embedding
down to query, key, and
value vectors

Project token embedding
down to query, key, and
value vectors

These values never change, so there’s no need to spend
FLOPs recomputing them every time

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

model.generate() from HuggingFace

Prefill stage processes each token in parallel

All tokens are present during
prefill, so we can process all
tokens in the sequence in
parallel

•Populate KV cache
•Generate probability for the

first generated token

Source: Efficiently Scaling Transformer
Inference, Pope et al 2022

https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf

Prefill stage processes each token in parallel
Input prompt
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT

Input prompt
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT

1 total forward pass ran

Prefill stage processes each token in parallel

Only 1 forward pass
needed to process all
input tokens in parallel

Decoding stage processes each token one by one

New token is appended to the input

Decoding stage processes each token one by one

New token is appended to the input

The forward pass is ran again

Input prompt
“Where do you take someone injured in a hide and seek accident?”

KV cache: [2, 12, d_model] Logits: [vocab_size]

MPT

1 total forward pass ran

Decoding stage processes each token one by one

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You

KV cache: [2, 13, d_model] Logits: [vocab_size]

MPT

2 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take

KV cache: [2, 14, d_model] Logits: [vocab_size]

MPT

3 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them

KV cache: [2, 15, d_model] Logits: [vocab_size]

MPT

4 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to

KV cache: [2, 16, d_model] Logits: [vocab_size]

MPT

5 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the

KV cache: [2, 17, d_model] Logits: [vocab_size]

MPT

6 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the I.C.U.

KV cache: [2, 18, d_model] Logits: [vocab_size]

MPT

7 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the I.C.U. 🥁

KV cache: [2, 19, d_model] Logits: [vocab_size]

MPT

8 total forward passes ran

Decoding stage processes each token one by one
Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the I.C.U. 🥁

KV cache: [2, 19, d_model] Logits: [vocab_size]

MPT

8 total forward passes ran

Every single generated
token triggered a forward
pass through the model

A forward pass involves moving the weights
from HBM to registers on the device

High bandwidth
memory (HBM)

A forward pass involves moving the weights
from HBM to registers on the device

High bandwidth
memory (HBM)

Load (some) weights for layer 1

A forward pass involves moving the weights
from HBM to registers on the device

High bandwidth
memory (HBM)

Registers Registers

Registers Registers

Shared memory

This matters, since the rate at which
bandwidth has been increasing is a lot slower
than processor speeds

Prefill and decode end up having extremely
different characteristics

Prefill loads the model once from
memory to process all input
tokens in parallel

Decode loads the model up to
max_new_tokens times, once for
every single token generated. It
only processes a single token.

Prefill and decode end up having extremely
different characteristics

Compute bound
High number of operations per byte read

Memory bound
Low number of operations per byte read

Prefill loads the model once from
memory to process all input
tokens in parallel

Decode loads the model up to
max_new_tokens times, once for
every single token generated. It
only processes a single token.

Serving large models

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB The workload has this many tokens

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

Each token has a head of size 128

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

The attention heads are concatenated,
and there are 64 heads

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

We need a 2 because there’s 1 key and 1 value

Memory consists of parameters and the KV cache

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

There are 80 layers

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

140 GB + 11 GB = 151 GB >> 80 GB

Model size

70e9 params * 2 bytes/param = 140e9 bytes =
140GB

KV cache size

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)
~= 11e9 bytes = 11 GB

Inspired by: Transformer Inference Arithmetic from kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

To reduce memory, we use tensor parallelism

GPU 0

GPU 1

GPU 2

GPU 3

GPU 5

GPU 4

GPU 6

GPU 7

W0

W1

W2

W3

W4

W5

W6

W7

Weights take up lots of memory, so shard them across GPUs

NVLink Interconnect

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[6]W[2] W

Column parallel shards the output dimension
across GPUs out_features

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

Column parallel shards the output dimension
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

x@W[0] x@W[1] x@W[2] x@W[3] x@W[4] x@W[5] x@W[6] x@W[7] all_gather

Column parallel shards the output dimension
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[2]W[0] W[1] W[3] W[4] W[5] W[6] W[7]

out_features / 8

xbatch_size

in_features

in_features

x @ W

Column parallel shards the output dimension
across GPUs

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[0]

Row parallel divides the input dimension by
GPUs out_features

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[0]

Row parallel divides the input dimension by
GPUs out_features

xbatch_size

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

in_features

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[0]

Row parallel divides the input dimension by
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0]

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[0]

Row parallel divides the input dimension by
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0] x @ Wx @ Wx @ Wx @ Wx @ Wx @ Wx @ Wx @ W

all_reduce

Each GPU has a
part of the result

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

W[0]

Row parallel divides the input dimension by
GPUs out_features

x[0]batch_size

in_features / 8

in_features / 8

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

W[7]

x[0] x[0] x[0] x[0] x[0] x[0] x[0] x @ W all_reduce

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Megatron-LM cleverly combines these tricks,
so there’s only one synchronization step

Column Parallel
Row Parallel

One single AllReduce

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Back-of-the-envelope inference
arithmetic

Say we have 8x A100 40GB GPUs trying to
run inference with Llama2-70B
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

Numbers everyone should know
A100 fp16/bfloat16: 312e12 FLOPs/second (3 and then two 12s)

A100 memory bandwidth: 1.5 TB/second

H100 fp16/bfloat16: 1e15 FLOPs/second (a petaflop)

H100 memory bandwidth: 3.3 TB/second (roughly double A100)

NVLink interconnect: 300 GB/s

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) =
0.92s

There are 70e9 parameters. For a single
token each one of them is involved at
exactly one point in the matrix multiply.
It does a single multiplication and an
add (think a dot product).

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) =
0.92s

There are 512 tokens per
sequence, and 32 sequences in
the batch.

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s

Computation and memory loading
are overlapped

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!

Calculating prefill on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time

Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15

So total time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Memory load time

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!

Time to First Token (TTFT): how long a user waits before they receive a
response to their query.

Calculating decoding time on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time, per output token

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12

So total time is:

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) =
0.001s

We only spend 10% of the time doing actual math!

Memory load time (from before)

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Calculating decoding time on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time, per output token

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12

So total time is:

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) =
0.001s

For 64, output tokens, 64 * 0.01s = 0.64s

Memory load time (from before)

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Calculating decoding time on A100
Let:

• batch_size = 32

• input_seq_len = 512

• max_output_tokens = 64

FLOPS time, per output token

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12

So total time is:

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) =
0.001s

For 64, output tokens, 64 * 0.01s = 0.64s.

Prefill was done in ~0.9s. We processed 8x more tokens in just
1.5x the time.

Memory load time (from before)

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Two numbers to bring these numbers closer to reality

High bandwidth
memory (HBM)

Model FLOPs
Utilization (MFU)

Relative to how fast
the accelerator
claims to run, what
percent of the
FLOPs do we
actually see when
we run the model?

Model Bandwidth
Utilization (MBU)

Relative to the
advertised system
bandwidth, what is
the actual
bandwidth realized?

Two numbers to bring these numbers closer to reality

High bandwidth
memory (HBM)

Model FLOPs
Utilization (MFU)

Relative to how fast
the accelerator
claims to run, what
percent of the
FLOPs do we
actually see when
we run the model?

Model Bandwidth
Utilization (MBU)

Relative to the
advertised system
bandwidth, what is
the actual
bandwidth realized?

Prefill vs. decode per-token latencies

160x difference, on A6000 GPU Source: SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills

https://arxiv.org/abs/2308.16369

Prefill vs. decode per-token latencies

OpenAI GPT-4 token pricing

Be careful about tokens/sec. If it
includes input and output tokens, the

metric could make you think your
system is running a lot faster than it

actually is.

Two metrics we care about:

1. Time To First Token (TTFT): how long does
it take before the first token is generated?

2. Time Per Output Token (TPOT): how long
does it take for each output token to be
generated?

MBU numbers for Llama2-70B

Source: LLM Inference Performance Engineering: Best Practices

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

Milliseconds are confusing…what do these numbers
mean?

Time to first token: 4s
Time per output token: 80ms

Milliseconds are confusing…what do these numbers
mean?

Time to first token: 3s
Time per output token: 46ms

Milliseconds are confusing…what do these numbers
mean?

Time to first token: 1s
Time per output token: 16ms

This is a North Star: it’s close to “Copilot” level functionality

Both of these metrics are important
Example: optimize for decoding throughput by only
running one sequence at a time

I have the fastest inference
engine out there at 100 output

tokens/second!

Both of these metrics are important
Example: optimize for decoding throughput by only
running one sequence at a time

I have the fastest inference
engine out there at 100 output

tokens/second!
GPU 0

GPU 1

GPU 2

GPU 3

GPU 5

GPU 4

GPU 6

GPU 7

W1

W2

W3

W5

W6

W7

Inference runtime is
capable of running 100
output tokens/second,
but only at batch size 1

S1S2S3S4S5

Request queue with sequences

Both of these metrics are important
Example: optimize for decoding throughput by only running one
sequence at a time

I have the fastest inference
engine out there at 100 output

tokens/second!
GPU 0

GPU 1

GPU 2

GPU 3

GPU 5

GPU 4

GPU 6

GPU 7

W1

W2

W3

W5

W6

W7

Inference runtime is
capable of running 100
output tokens/second,
but only at batch size 1

S2S3S4S5

Request queue with sequences

S1

All these sequences are
waiting in the queue, so
time to first token will be
very large

How do we speed this up?

Idea 1: reduce how much
memory you need

Idea 1.1: make the KV cache smaller?

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

Idea 1.1: make the KV cache smaller?

Grouped query attention: reduce the number of key and value heads
to some multiple of the number of query heads. Produces negligible
performance decrease for large (>2x reduction in inference cost)

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

Idea 1.1: make the KV cache smaller?

Serve by partitioning each head on a different GPU

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

Idea 1.1: make the KV cache smaller?
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 64

KV cache size (maximum)

80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 +
32) ~= 11e9 bytes = 11 GB

Idea 1.1: make the KV cache smaller?
Let’s say we’re serving a
Llama2-70B model with:

• precision = fp16

• d_model = 8192

• n_layers = 80

• batch_size = 4

• input_seq_len = 1024

• max_new_tokens = 32

• head_size = 128

• kv_n_heads = 8

KV cache size (maximum)

80 * 2 * 2 bytes/param * 8 * 128 * 4 * (1024 + 32)
~= 11e9 bytes ~= 1.3 GB

8x reduction!

Idea 1.2: how do we actually allocate?
How much memory is required for a request:
how many total tokens will the generation
take?

Problem: fragmentation, which occurs from
allocation and frees

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

Idea 1.2: how do we actually allocate?

Tons of memory waste!
How much memory is required for a request:
how many total tokens will the generation
take?

Problem: fragmentation, which occurs from
allocation and frees

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

Idea 1.2: how do we actually allocate?

• Map logical blocks
to physical blocks
on GPU RAM

• Fix the block sizes,
only allocate when
necessary

• If there are multiple
blocks that come in
with the same
prompt, then
increase the
reference count of
physical KV blocks

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

Idea 1.2: how do we actually allocate?

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

Idea 2: get a greater bang for
your bytes by increasing the
batch size

A first idea: naively take requests and run
them through the model
Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

What happens when the request is done?

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As a large language model I don’t know how but I

Evan </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Sure </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Rocky </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Batched LLM processing keeps these
sequences idle, as the request latency
becomes the maximum of all sequences in
the batch.

What happens when the request is done?

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As a large language model I don’t know how but I

Evan </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Sure </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

Rocky </s> </s> </s> </s> </
s> </s> </s> </s> </s> </s>

There’s room for more requests…but we can’t serve them.
IMPORTANT QUESTIONS CAN’T GET ANSWERED!

When will AGI be achieved internally at Databricks?

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As

Evan

Sure

Rocky

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine

model.forward(input_ids) model.run_step(ids)

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As

Evan

Sure

Rocky

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine
3. Receive execution resultsWhen will AGI be achieved internally at Databricks?

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As

Evan

Sure

Rocky

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine
3. Receive execution resultsWhen will AGI be achieved internally at Databricks?

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Who wears a better shacket - Evan or Linden?

Do you like living in San Francisco?

What should I name my pet rock?

As a

Evan </s>

Sure </s>

Rocky </s>

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine
3. Receive execution resultsWhen will AGI be achieved internally at Databricks?

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.
As a

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine
3. Receive execution resultsWhen will AGI be achieved internally at Databricks?

KV cache evicted
GPU memory freed

A better idea: exploit iterations

Write me an epic ten-thousand page novel that will win a Nobel Prize.

Request Pool

Introduce the Orca scheduler
1. Select the requests to run

next.
2. Run an iteration of the engine
3. Receive execution results

When will AGI be achieved internally at Databricks?
As a

Iteration level batching is a lot faster
• Reduced waiting time for a given request
• High GPU utilization from large batch sizes
• Less wasted computation from padding within a simple

Idea 3: speed up decoding by
trying to decode more tokens in
parallel

What if we decoded several tokens in parallel if
the problem is decoding one token at a time?
Idea: train auxiliary models that can predict n tokens instead (not just 1
token ahead)

Model 2 tokens
ahead

3 tokens
ahead

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

https://arxiv.org/abs/1811.03115

Idea: train auxiliary models that can predict n tokens instead (not just 1
token ahead)

Model 2 tokens
ahead

3 tokens
ahead

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

What if we decoded several tokens in parallel if
the problem is decoding one token at a time?

https://arxiv.org/abs/1811.03115

Idea: train auxiliary models that can predict n tokens instead (not just 1
token ahead)

Model 2 tokens
ahead

3 tokens
ahead

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

What if we decoded several tokens in parallel if
the problem is decoding one token at a time?

https://arxiv.org/abs/1811.03115

Why does this make sense?

FLOPS time, per (>1) output token

Total FLOPs: 2 * 70e9 * 32 * 1 ~= 4.48e12

So total time is:

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) =
0.001s

Memory load time (from before)

Total bytes: 2 * 70e9 = 140e9

So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Decoding several tokens at once reduces the
number of forward passes that need to be ran

Results

Source: Blockwise Parallel Decoding for Deep Autoregressive Models

https://arxiv.org/abs/1811.03115

Take 2: training these are expensive, and
not that accurate, so let’s try another model

Big Model

Cheap small model I’m really fast and small right

A cheap small model generates tokens

Take 2: training these are expensive, and
not that accurate, so let’s try another model

Big Model

Cheap small model

I’m
really
fast
and

small
right

The big model verifies them in parallel

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf

Results

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf

Adding this makes sense…but not for high batch sizes

•FLOPs go up but…
•You’re doing k times as much

work, and at batch size b, an
effective batch size of k * b might
bring you into the compute
bound regime

•And that lots of that work is
wasted, since you might be
wrong

Credit: Abhi Venigalla

