Transformer Inference

From first principles to the current state of the art

Linden Li
NeurlPS 2023

Real-time user interactions require
performant inference of large models

File Home Insert Layout References Review View Help
‘ a r v v ¥ Apos@ody) v 11v B I Uv £v Av - iZv =Ev v Ov @ 8v £
‘ X

6 Create content with Copilot

draft a proposal from yesterday’s [| meeting notes|

& GitHub Copilot
Chatbots: rapid response times Copilots: rapid, real time assistive
after a user message applications with dynamically High throughput batch inference:
updated suggestions after a few process several documents at once

keystrokes

Inference constraints affect all portions of the machine
learning pipeline

Training: modern architectures like the
Mixture of Experts model and grouped query
attention (e.g., LLaMA 2) are designed for
low inference

Debugging and performance optimization:
first principles can be both an important
sanity check and roadmap to understand
which optimizations are likely to work

UX: understanding how LLM inference work
can drive the development of real time user
applications

Multiprocessors just load data
and do math

A multiprocessor spends time on two operations

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ED (BEES BEDE | REDf LD/
SFU SFU

High bandwidth 3.5 TB/s S e

memory (HBM) e

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ Lb/ LD/ LD/ LD/ LD/ LD/ Lb/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

1. Loading data from GPU memory
(also known as HBM, VRAM) to the : .

computing unit’s SRAM and registers at ﬁ f;ree;'\'/‘l'gf’A'\l"_l‘;gz)pg"FfSSVfl‘i’tL(g\S:
a specified bandwidth sUb-cores |

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A multiprocessor spends time on two operations

2. Mathematical — -
(o) p era t i ons , ty p | Cca I | y s || EE—————

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
[} []
m a t r I X _ m a t r I X O r Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP32 FP32 FP64 FP32 FP32 FP64
o FP32 FP32 FP64 FP32 FP32 FP64
m a t r I X — Ve C t O r FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
) o . FP32 FP32 FP64 FP32 FP32 FP64
m u Itl I I e S ta kl n FP32 FP32 FP64 FP32 FP32 FP64
rr22 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE
FP32 FP32 Fros 4™ GENERATION FP32 FP32 FP64 4™ GENERATION
. FP32 FP32 FP64 FP32 FP32 FP64
| a C e I n t h e te n S O r FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

CO re FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU

High bandwidth 3.5 TB/s L — —

LO Instru Sache on Cache

memory (HBM) e —— rerre———

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator

A Streaming Multiprocessor (SM)
in the NVIDIA H100 GPU, with four
sub-cores

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job iIs said to be memory bandwidth bound if memory

cannot supply work at a rate to keep

High bandwidth [0.06, -0.01, 0.42, ..]

memory (HBM)

HBM can only send so
many bytes/second
(the bandwidth)

Example: computing
activation functions

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ SFU

ST ST

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP84
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ SFU

ST ST

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

LD/ LD/ SFU

TENSOR CORE
4" GENERATION

F.relu(x)

ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

Tensor Memory Accelerator

LD/
ST

FP84
FP64
FP84
FP64
FP84
FP64
FP64
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/ SFU

ST ST

the processor busy

max (0, Xx)

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job iIs said to be memory bandwidth bound if memory

cannot supply work at a rate to keep

High bandwidth
memory (HBM)

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ LD/
ST ST ST SFU

Warp Scheduler (32 thread/clk)

HBM can only send so
many bytes/second

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

(the bandwidth)

Example: computing

activation functions

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP84
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ LD/
ST ST ST SFU

Tensor Memory Accelerator

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

the processor busy

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

F.relu(x) = max(0, x)

LD/ LD/ LD/
ST ST ST SFU

siomcats il [0.06, -0.01, 0.42, ..]

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP84
FP64
FP84
FP64
FP84
FP64
FP64
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/ LD/
ST ST ST SFU

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job iIs said to be memory bandwidth bound if memory
cannot supply work at a rate to keep the processor busy

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

High bandwidth — L T B — T
g 0 = 09 ’ —0 = @ 2 ’ @ = 5 4 ’ I] LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU F E re -L u (X) = m a X (@ ’ X)
memory (HBM)

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

HBM can only send so S ESARE,
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

m a n y byt e S/S e C O n d Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

(the bandwidth) ————= ————

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD SEDS REDS BEDIS (SEDI | SEDES REDIS | SED) Lb/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

-~ . | Datahasnot arrived
——————] Vet GPU s idle!

Example: computing
activation functions

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

A job Is said to be compute bound if it is
bottlenecked by the speed of the processor

Warp Scheduler (32 threadici) ‘
Dispatch Unit (32 thread/c|

Register File (16,384 x 3‘?
-

High bandwidth

[0.06, —-0.01, 0.42, ..]
memory (HBM)

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

Example: raise each number
to the 1,000,000th power

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ LD/

ST ST ST SFU

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP84
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ LD/

ST ST ST SFU

Tensor Memory Accelerator

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

‘arp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

sister File (16,384 x 32-bit)
)

Processor can only do
so many floating point
operations (FLOPSs)
every second

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

for _ in range(1000000):
X k= X

LD/ LD/ LD/

ST ST ST SFU

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP84
FP64
FP84
FP64
FP84
FP64
FP64
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/ LD/

ST ST ST SFU

Source: NVIDIA H100 Whitepaper, Making Deep Learning Go Brrrr From First Principles

https://resources.nvidia.com/en-us-tensor-core
https://horace.io/brrr_intro.html

Inference: a two stage workload

A transformer consists of the following

block repeated many times, per token

tivalue

Compute projections
into query, key and
value

softmax

t1 key t1 value

‘ ‘ ‘ ‘ ‘ to key to value
. ti-1 key ti-1 value
tiquery ti key t; value

Compute the softmax with the query and all previous keys
Then multiply by all previous values

A 4

\

Project up once and then down
project to the original dimension

A transformer consists of the following

block repeated many times, per token

tivalue

Compute projections
into query, key and
value

Keys and Values for all previous

tokens will be reused. It's a waste to

recompute them, so store them in
the KV cache.

t1 key
t2 key

ti-1 key

tiquery tl key

ti-1 value

t1 value
to value

ti value

Compute the softmax with the query and all previous keys
Then multiply by all previous values

A 4

\

Project up once and then down
project to the original dimension

KV caching reduces the need for redundant
computation

Welcome to NeurlPS
Token embedding Token embedding Token embedding
‘ ‘ ‘ ‘ ‘ ‘ Project token embedding _ Project token embedding _ Project token embedding
down to query, key, and down to query, key, and down to query, key, and
value vectors value vectors value vectors
query key value query value query value

Attention requires computing the dot product of the
current query with all previous keys (and later values)
Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Welcome to NeurlPS
Token embedding Token embedding Token embedding
‘ ‘ ‘ ‘ ‘ ‘ Project token embedding _ Project token embedding _ Project token embedding
down to query, key, and down to query, key, and down to query, key, and
value vectors value vectors value vectors
query key value query value query value
query

Attention requires computing the dot product of the
current query with all previous keys (and later values)
Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Welcome to NeurlPS
Token embedding Token embedding Token embedding
‘ ‘ ‘ ‘ ‘ ‘ Project token embedding _ Project token embedding _ Project token embedding
down to query, key, and down to query, key, and down to query, key, and
value vectors value vectors value vectors
query key value query value query value
query

Attention requires computing the dot product of the
current query with all previous keys (and later values)
Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Welcome to NeurlPS
Token embedding Token embedding Token embedding
‘ ‘ ‘ ‘ ‘ ‘ Project token embedding _ Project token embedding _ Project token embedding
down to query, key, and down to query, key, and down to query, key, and
value vectors value vectors value vectors
query key value query value query value

query

Attention requires computing the dot product of the
current query with all previous keys (and later values)
Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

KV caching reduces the need for redundant
computation

Welcome to NeurlPS
Token embedding Token embedding Token embedding
‘ ‘ ‘ ‘ ‘ ‘ Project token embedding _ Project token embedding _ Project token embedding
down to query, key, and down to query, key, and down to query, key, and
value vectors value vectors value vectors
query key value query kKey value query key value

These values never change, so there's no need to spend
FLOPs recomputing them every time

Inspired by: Generative LLM inference with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

model.generate() from HuggingFace

- N
while True:

model_1inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

outputs = self(
x*model_1inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

)

next_token_logits = outputs.logits[:, -1, :]

next_tokens_scores = logits_processor(input_ids, next_token_logits)

next_tokens = torch.argmax(next_tokens_scores, dim=-1)

i1f eos_token _id i1s not None:
i1f pad_token_1id is None:
raise ValueError("If "eos_token_id 1is defined, make sure that "pad_token_id 1is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

input_1ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)

1f eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_1id_tensor.unsqueeze(1l)).prod(dim=0)

)

i1f unfinished_sequences.max() ==
this_peer_finished = True

if stopping_criteria(input_ids, scores):
break

1f streamer is not None:
streamer.end()

Prefill stage processes each token in parallel

0
while True:

model_1inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

outputs = self(

°
All tokens are present durin
return_dict=True,
output_attentions=output_attentions, ®
prefill, so we can process all
) 7
° [
tokens in the sequence In
next_tokens_scores = logits_processor(input_ids, next_token_logits) pa rallel
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
[t eos. token_id ts not None: ° Populate KV cache
i1f pad_token_1id is None: .t o
raise ValueError("If "eos_token_id 1is defined, make sure that "pad_token_id 1is defined.") | f h
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) ‘ enera e pro a I I y Or e
fi K
input_1ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) IrSt generated tO en

1f eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_1id_tensor.unsqueeze(1l)).prod(dim=0)

)

i1f unfinished_sequences.max() ==
this_peer_finished = True

if stopping_criteria(input_ids, scores):
break

10 Gy e Q?E e Source: Efficiently Scaling Transformer
streamer.en
S Inference, Pope et al 2022

https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf
https://arxiv.org/pdf/2211.05102.pdf

Prefill stage processes each token in parallel

Input prompt - | | |
“Where do you take someone injured in a hide and seek accident?”

MPT

TN

KV cache: [2, 12, d model] Logits: [vocab_size]

Prefill stage processes each token in paraliel

Input prompt - | | |
“Where do you take someone injured in a hide and seek accident?”

Only 1 forward pass
nheeded to process all MPT
input tokens in parallel /\
KV cache: [2, 12, d model] Logits: [vocab_size]

1 total forward pass ran

Decoding stage processes each token one by one

0
while True:

model_1inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

outputs = self(
x*model_1inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

)

next_token_logits = outputs.logits[:, -1, :]

New token is appended to the input

next_tokens_scores = logits_processor(input_ids, next_token_logits)

next_tokens = torch.argmax(next_tokens_scores, dim=-1)

i1f eos_token _id i1s not None:
i1f pad_token_1id is None:
raise ValueError("If "eos_token_id 1is defined, make sure that "pad_token_id 1is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

input_1ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)

1f eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_1id_tensor.unsqueeze(1l)).prod(dim=0)

)

i1f unfinished_sequences.max() ==
this_peer_finished = True

if stopping_criteria(input_ids, scores):
break

1f streamer is not None:
streamer.end()

Decoding stage processes each token one by one

0
while True:

model_1inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

outputs = self(
x*model_1inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

)

next_token_logits = outputs.logits[:, -1, :]

New token is appended to the input

next_tokens_scores = logits_processor(input_ids, next_token_logits)

next_tokens = torch.argmax(next_tokens_scores, dim=-1)

The forward pass is ran again

i1f pad_token_1id is None:
raise ValueError("If "eos_token_id 1is defined, make sure that "pad_token_id 1is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

input_1ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)

1f eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_1id_tensor.unsqueeze(1l)).prod(dim=0)

)

i1f unfinished_sequences.max() ==
this_peer_finished = True

if stopping_criteria(input_ids, scores):
break

1f streamer is not None:
streamer.end()

Decoding stage processes each token one by one

Input prompt - | | |
“Where do you take someone injured in a hide and seek accident?”

MPT

TN

KV cache: [2, 12, d model] Logits: [vocab_size]

1 total forward pass ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You

MPT

TN

KV cache: [2, 13, d model] Logits: [vocab_size]

2 total forward passes ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take

MPT

TN

KV cache: [2, 14, d model] Logits: [vocab_size]

3 total forward passes ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them

MPT

TN

KV cache: [2, 15, d model] Logits: [vocab_size]

4 total forward passes ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to

MPT

TN

KV cache: [2, 16, d model] Logits: [vocab_size]

5 total forward passes ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the

MPT

TN

KV cache: [2, 17, d model] Logits: [vocab_size]

6 total forward passes ran

Decoding stage processes each token one by one

- R

7 total forward passes ran

Decoding stage processes each token one by one

Logits: [vocab_size]

8 total forward passes ran

Decoding stage processes each token one by one

Input prompt
“Where do you take someone injured in a hide and seek accident?”
You take them to the [.C.U.

Every single generated :
token triggered a forward MPT
pass through the model

KV cache: [2, 19, d model] Logits: [vocab_size]

8 total forward passes ran

A forward pass involves moving the weights
from HBM to registers on the device

L1 Instruction Cache

LO Instruction Cache ' LO Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE
FP32 FP32 FP64 4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LDI LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST

LO Instruction Cache 7 L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

A forward pass involves moving the weights
from HBM to registers on the device

L1 Instruction Cache

LO Instruction Cache LO Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

FP32 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE
FP32 FP32 FP64 4" GENERATION FP32 FP32 FP64 4" GENERATION

FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
. FP32 FP32 FP64 FP32 FP32 FP64
Load (Some) Welghts for Iayer 1 FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LDI LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST

LO Instruction Cache 7 L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

A forward pass involves moving the weights
from HBM to registers on the device

L1 Instruction Cache

LO Instruction Cache LO Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Registers Registers

FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE
FP32 FP32 FP64 4™ GENERATION FP32 FP32 FP64 4™ GENERATION
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST

LO Instruction Cache LO Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Registers Registers

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator

Shared memory

This matters, since the rate at which
bandwidth has been increasing is a lot slower
than processor speeds

100000
Embedded memory clock speeds are hitting a wall
10000 }
Processor Embedded
< Memory Perfor(nance
% 1000 Gap |
— ’ . 4
O P
©
Q
N
© 100
=
-
O
Z
10
ory (Latency)
External Mem
1 —
O o oV & o> 09 a0 A P ©®O O N AV DD ™ O O A PO O N A OO > OH O OSSO
FPFFFFFFFFI P III P I P I E LSS E P

“Source: Hennessy and Patterson, 5% Edition

Figure 1: Embedded Memory Performance Gap is Getting Worse

Prefill and decode end up having extremely
different characteristics

Prefill loads the model once from
memory to process all input
tokens In parallel

Decode loads the model up to
max new tokens times, once for
every single token generated It
only processes a single token.

Prefill and decode end up having extremely
different characteristics

Prefill loads the model once from Compute bound
memory to process all input High number of operations per byte read

tokens In parallel

Decode loads the model up to

max_new_tokens times, once for Memory bound
every smgle token. generated, It Low number of operations per byte read

only processes a single token.

Serving large models

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

* n_layers = 80 80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)

~=11e9 bytes = 11 GB

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

e n layers = 30

80 % 2 x 2 bytes/param * 64 * 128 = 4 * (1024 + 32)

~= 11e9 bytes =11 GB The workload has this many tokens

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

e n layers = 30

80 * 2 x 2 bytes/param * 64 128 = /4 * (1024 + 32)

~= 11e9 bytes =11 GB Each token has a head of size 128

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size The attention heads are concatenated,

and there are 64 heads

e n layers = 30

80 * 2 x 2 bytes/param * |64 * 128 = /4 * (1024 + 32)

~=11e9 bytes = 11 GB

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

We need a 2 because there's 1 key and 1 value

e n layers = 30

80 %2 * 2 bytes/param * 64 * 128 * /4 * (1024 + 32)

~=11e9 bytes = 11 GB

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

There are 80 layers

e n layers = 30

80 * 2 * 2 bytes/param * 64 * 128 = /4 * (1024 + 32)

~=11e9 bytes = 11 GB

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

Memory consists of parameters and the KV cache

Let’s say we're serving a Model size
Llama2-70B model with:

/0e9 params * 2 bytes/param = 140e9 bytes =
fplé 140GB

e d model = 38192

* precision

KV cache size

* n_layers = 80 80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 + 32)

~=11e9 bytes = 11 GB

* Tnput seqg len 1024

o max_new_tokens = 32 140 GB + 11 GB — 151 GB > > 80 GB
* head size = 128

e KV n heads = 64

Inspired by: Transformer Inference Arithmetic from Kipply’s blog

https://kipp.ly/transformer-inference-arithmetic/

To reduce memory, we use tensor parallelism

NVLink Interconnect

3

Wo

Weights take up lots of memory, so shard them across GPUs

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Column parallel shards the output dimension
across GPUs

out_features

in_features

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Column parallel shards the output dimension

across GPUs
in_features w3 WS

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

batch _size

in_features

https://arxiv.org/pdf/1909.08053.pdf

Column parallel shards the output dimension

across GPUs
in_features w3 WS

o o

in_features

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Column parallel shards the output dimension

across GPUs
in_features w3 WS

o

in_features

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Row parallel divides the input dimension by
GPUs

in_features

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Row parallel divides the input dimension by
GPUs

W[O]

W[1]
WI[2]
W[3]
in_features / 8
W[4]
WI[5]

WI[6]

WI[7]

batch _size

in_features

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Row parallel divides the input dimension by
GPUs

W[O]

W[1]
WI[2]

W[3]
in_features / 8

o 5

in_features / 8

W[4]
W[5]

WI[6]

WI[7]

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Row parallel divides the input dimension by
GPUs

W[O]

W[1]
WI[2]

W[3]
in_features / 8

o

in_features / 8

W[4]

W[5] Fach GPU has a

W[6] part of the result

WI[7]

all _reduce

X @ W

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Row parallel divides the input dimension by
GPUs

W[O]

W[1]
WI[2]

W[3]
in_features / 8

o

in_features / 8

W[4]
WI[5]
W[6]

WI[7]

X
S
=

all _reduce

Source: Meqgatron-LM: Training Multi-Billion Parameter Lanquage Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Megatron-LM cleverly combines these tricks,
so there's only one synchronlzatlon step

’_-—_———_———————————_———N\ v ¥_F_¥_¥_¥_¥ ¥ _F_¥ ¥ Vv v VT

/ \ [\

! H/::/ One single AllReduce

G
= | X = XA4; 2R Y| —| YaB) 4= |«
C

Z

P
J
[
Q
I
JnodouQ \
I

—

: = | Row Parallel
Column Parallel | B /
\A = [Al’ AQ] /N D = [Bg] /

-

)

e e e e e e e S S S s e e RS T e ——————— — — — — — — — — -

o — — o —— —— — o ———— — —

e e e, e e, e, e, e, e, e, e, e, e, S, s, e, e, e, e e,

/
= Vi | |/ =
X
l: T G
=X = Q1 i:

YlBl = Zl —

= K

L%@J

[Xewyos]
[l

[1nodouq]
{l
03¢
{l
=

Y232 @Zg —

Lgd

4

[Xew)yos]
[

[Jnodouq]
{
X
{
o0

Q

J
nodouq

J

N

———— — ——— — — o — ——— — — ——

T o o ———————————— - -

vy
|
—1
o o™
N =
!
\\\

‘ Q = [Q1,Q:]
N split attention heads — ¢ K = [K, Ko] J

i e e e = —— — — — —— — — — ————— ——— —— ——— ———— — —" ———

(b) Self-Attention

Source: Meqgatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al, 2020

https://arxiv.org/pdf/1909.08053.pdf

Back-of-the-envelope inference
arithmetic

Say we have 8x A100 40GB GPUs trying to
run inference with Llama2-70B

Let:
e batch size = 32
e Tnput seq len = 512

e max output tokens = 64

Numbers everyone should know

A100 fp16/bfloat16: 312e12 FLOPs/second (3 and then two 12s)
A100 memory bandwidth: 1.5 TB/second

H100 fp16/bfloat16: 1e15 FLOPs/second (a petaflop)

H100 memory bandwidth: 3.3 TB/second (roughly double A100)
NVLink interconnect: 300 GB/s

Calculating prefill on A100

There are 70e9 parameters. For a single
token each one of them is involved at
exactly one point in the matrix multiply.
It does a single multiplication and an
add (think a dot product).

FLOPS time
Total FLOPs:

2 * 7/0e9

So total time Is:

* 32 % 512 ~

= 2.3e15

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) =

0.92s

Let:
e pbatch size = 32
e input _seq len = 512

* max_output tokens = 64

Let:

Calculating prefill on A100 o e -

input seq len = 512

* max_output tokens = 64

There are 512 tokens per
sequence, and 32 sequences in
the batch.

Total FLOPs: 2 * 7/0e9 *x(32 * 512 ~= 2.3e15

FLOPS time

So total time Is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) =
0.92s

Let:

Calculating prefill on A100 o e -

FLOPS time
Total FLOPs: 2 x 7/0e9 x 32 * 512 ~= 2.3e15

So total time Is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

input seq len = 512

* max_output tokens = 64

Memory load time
Total bytes: 2 x 70e9 = 140e9
So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Let:

Calculating prefill on A100 o e -

input seq len = 512

* max_output tokens = 64

FLOPS time Memory load time
Total FLOPs: 2 * 70e9 * 32 * 512 ~= 2.3e15 Total bytes: 2 * 70e9 = 140e9
So total time is: So total load time is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s 140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Computation and memory loading
are overlapped

Prefill time =|max(FLOPs time, load time)|= 0.92s

Let:

Calculating prefill on A100 e size -

e input _seq len = 512

* max_output tokens = 64

FLOPS time
Total FLOPs: 2 x 7/0e9 * 32 * 512 ~= 2.3e15

So total time Is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!

Let:

Calculating prefill on A100 e size -

e input _seq len = 512

* max_output tokens = 64

FLOPS time
Total FLOPs: 2 x 7/0e9 * 32 * 512 ~= 2.3e15

So total time Is:

2.3e15 FLOPs / (8 * 312e12 FLOPs/sec) = 0.92s

Time to First Token (TTFT): how long a user waits before they receive a
response to their query.
Prefill time = max(FLOPs time, load time) = 0.92s - compute bound!

Let:

Calculating decoding time on A100 ===~ >

e input _seq len = 512

* max_output tokens = 64

Total FLOPs: 2 * 70e9 * 32 x 1 ~= 4.48e12 Total bytes: 2 * 70e9 = 140e9

So total time is: So total load time is:
4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 140e9 bytes / (8 * 1.5e12 bytes /
0.001s sec) ~= 0.01s

We only spend 10% of the time doing actual math!

Let:

Calculating decoding time on A100 ===~ >

For 64, output tokens, 64 * 0.01s = 0.64s

e input _seq len = 512

* max_output tokens = 64

Memory load time (from before)
Total bytes: 2 x 70e9 = 140e9
So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Let:

Calculating decoding time on A100 ===~ >

For 64, output tokens, 64 * 0.01s = 0.64s.

e input _seq len = 512

* max_output tokens = 64

Memory load time (from before)
Total bytes: 2 x 70e9 = 140e9
So total load time is:

140e9 bytes / (8 * 1.5e12 bytes /
sec) ~= 0.01s

Prefill was done in ~0.9s. We processed 8x more tokens in just

1.5x the time.

Two numbers to bring these numbers closer to reality

Model Bandwidth
Utilization (MBU)

Relative to the
advertised system
bandwidth, what is

the actual
bandwidth realized?

Two numbers to bring these numbers closer to reality

‘Warp Scheduler (32 thread/clk) - Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
M o d e I F Lo P s Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

om® ° FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
U t I I I Z a t I O n (M F U) FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

FP32 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE

° FP32 FP32 FP64 4" GENERATION FP32 FP32 FP64 4" GENERATION
R I h f FP32 FP32 FP64 FP32 FP32 FP64
e a I Ve O OW a S FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
t h | t FP32 FP32 FP64 FP32 FP32 FP64
e acceleraltor

FP32 FP32 FP64 FP32 FP32 FP64
Lb/ LD/ LD/ LD/ LD/l LD/ LD/ SFU Lb/ LD/ LD/ LD/ LDI LD/ LD/ SFU

claims to run, what 2 8 I e 6 e s e e

D Instruc

iction Cache

percent of the T ——

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
F L O P S d O We Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
a ctu a | | see W h en — T — T
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

We r u n t h e m O d e I ? INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
o INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION INT32 FP32 FP32 FP64 4™ GENERATION

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator

Prefill vs. decode per-token latencies

Prefill Decode
0.25- 24 preproj
40- IO attn
0.20- postproj
»n ™) B ffn Inl
50.15. 530- B ffn In2
& — I others
-E 0.10 £ 20
N) =
N Bn e NN AN S AN
0.05- 10- —
0.00- - A LT
1 2 4 8 12 18 071 2 4 8 12 18

Batch size Batch size
160x difference, on A6O00 GPU

Source: SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills

https://arxiv.org/abs/2308.16369

Prefill vs. decode per-token latencies

Model Input Output
8K context $0.03 / 1K tokens $0.06 / 1K tokens
32K context $0.06 / 1K tokens $012 / 1K tokens

OpenAl GPT-4 token pricing

Be careful about tokens/sec. If it
Includes input and output tokens, the
metric could make you think your
system is running a lot faster than it
actually is.

Two metrics we care about:

1. Time To First Token (TTFT): how long does
It take before the first token is generated?

2. Time Per Output Token (TPOT): how long
does it take for each output token to be
generated?

MBU numbers for Llama2-70B

Observed MBU for varying batch sizes (Llama v2 70B fp16) Time per output token per user for varying batch sizes (LLaMa v2 70B fp16)
*Higher is better *Lower is better
B batch size1 [batch size 16 B 4xA100-40GB W 8xA100-40GB | 2xH100-80GB 4xH100-80GB [8xH100-80GB
60% 60
M
£
2
40% 3 40
)
Q.
S c
> g
2 [
= 5
o % 20
o
o,
Q.
)
£
0% =
2xH100-80GB 4xH100-80GB 8xH100-80GB 0

Tensor parallelism
Batch size

Source: LLM Inference Performance Engineering: Best Practices

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

Milliseconds are confusing...what do these numbers
mean?

Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua Ut enim ad minim
veniam quis nostrud exercitation ullamco laboris nisi ut aliquip Lorem
Ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua Ut enim ad minim veniam quis
nostrud exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit
amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua Ut enim ad minim veniam quis nostrud
exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit

Time to first token: 4s
Time per output token: 80ms

Milliseconds are confusing...what do these numbers
mean?

Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua Ut enim ad minim
veniam quis nostrud exercitation ullamco laboris nisi ut aliquip Lorem
Ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua Ut enim ad minim veniam quis
nostrud exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit
amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua Ut enim ad minim veniam quis nostrud
exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit

Time to first token: 3s
Time per output token: 46ms

Milliseconds are confusing...what do these numbers
mean?

This is a North Star: it’'s close to “Copilot” level functionality

Lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua Ut enim ad minim
veniam quis nostrud exercitation ullamco laboris nisi ut aliquip Lorem
Ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua Ut enim ad minim veniam quis
nostrud exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit
amet consectetur adipiscing elit sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua Ut enim ad minim veniam quis nostrud
exercitation ullamco laboris nisi ut aliquip Lorem ipsum dolor sit

Time to first token: 1s
Time per output token: 16ms

Both of these metrics are important
Example: optimize for decoding throughput by only
running one sequence at a time

| have the fastest inference
=8 cngine out there at 100 output
tokens/second!

Both of these metrics are important
Example: optimize for decoding throughput by only
runnlng one seqguence at a time

Request queue with sequences

oo Lo [0 [52 [st

|

V7= /

\\\
| have the fastest inference

&8 cngine out there at 100 output
tokens/second!

Inference runtime is
capable of running 100
output tokens/second,
but only at batch size 1

Both of these metrics are important

Example: optimize for decoding throughput by only running one
sequence at a time

. All these sequences are
Request queue with sequences waiting in the queue, so

time to first token will be

|
<

\
= | have the fastest inference

engine out there at 100 output
tokens/second!

Inference runtime is
capable of running 100
output tokens/second,
but only at batch size 1

How do we speed this up?

ldea 1: reduce how much
memory you need

ldea 1.1: make the KV cache smaller?

Multi-head

Keys

B S S 2 e S S S
||||||||
llllllll
llllllll
||||||||

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

ldea 1.1: make the KV cache smaller?

: | A7 GOA-XXL MHA-XXL
Multi-head Grouped-query Multi-query
>
=
Values g
5 409 MQA-XXL
Keys E
Tiiiiii0 A A A A e 46
--00000000 00000000 DOGO0GN
0 0.5 1 1.5

Time per sample (ms)

Grouped query attention: reduce the number of key and value heads
to some multiple of the number of query heads. Produces negligible
performance decrease for large (>2x reduction in inference cost)

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

ldea 1.1: make the KV cache smaller?

[
. XXI
_ , A7 GQA-XXL MHA
Multi-head Grouped-query Multi-query
>
=
Values a1 _
E 165 @ ~
kS . MQA-XXL
Keys Qq:)‘
R R 46 O
~=[JU000000 DO00OUOD DORDOUDOC
l
0 0.5 1 1.5

Time per sample (ms)

Serve by partitioning each head on a different GPU

Source: GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

https://arxiv.org/pdf/2305.13245.pdf

ldea 1.1: make the KV cache smaller?

Let's say we're serving a
Llama2-70B model with:

fp16 KV cache size (maximum)

* precision

e d model = 8192 80 * 2 * 2 bytes/param * 64 * 128 * 4 * (1024 +

32) ~=11e9 bytes =11 GB
e n layers = 30

* Tnput seqg len 1024
* max new tokens = 32
* head size = 128

e Kv n heads = 64

ldea 1.1: make the KV cache smaller?

Let's say we're serving a
Llama2-70B model with:

fpl6 KV cache size (maximum)

* precision

e d model = 8192 80 * 2 * 2 bytes/param * 8 * 128 x 4 * (1024 + 32)

~=11e9 bytes ~= 1.3 GB
e n layers = 80

* input seq len 1024 8x reduction!
* max new tokens = 32
e head size = 128

e KV n heads = 8

ldea 1.2: how do we actually allocate?

How much memory is required for a request:
how many total tokens will the generation
take?

Problem: fragmentation, which occurs from
allocation and frees

1 slot for 2 slots future used | 1 slot future used
generated token (reserved) External fragmentation (reserved)
A
Four | score | and | seven | years | ago our |fathers |brou You | only live
Y Y
7 KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (internal fragmentation) request B's prompt (Internal fragmentation)
Request A Request B
current iteration current iteration

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

ldea 1.2: how do we actually allocate?

How much memory is required for a request:

how many total tokens will the generation

take?

Problem: fragmentation, which occurs from

allocation and frees

Tons of memory waste!

B Token states Reservation M Internal frag. Exgi;]nearlsfrag.

100

Four | score | and | seven | years

ago

e
7 KV cache states for
request A's prompt

8.9

g 80 -
Q
3 60
(7]
: B
Q
S 40
5 .
< 201

0 .

Orca Orca Orca vLLM
(Max) (Pow?2) (Oracle)
1 slot for 2 slots future used _ 1 slot future used
generated token (reserved) External fragmentation (reserved)
\ A A *
L J
Y Y Y
2038 slots never used 3 KV cache states for 507 slots never used
(internal fragmentation) request B's prompt (Internal fragmentation)
Request A Request B
current iteration current iteration

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

ldea 1.2: how do we actually allocate?

e Map logical blocks P
to physical blocks | Block 0
on GPU RAM Outpats: “athers’ o brovgnt s st Promrs Poca P G
e Fixthe block sizes, e -
only allocate when | o (0., Poy G| Bockme [e
necessary | s Booas Como P o L | *es | [/~
o If there are multiple _ o — o
blocks that come in = e e L
with the same * e —t——t
prOmpt' then Block 7 |~ Four | score and seven
Increase the T

reference count of
physical KV blocks

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

ldea 1.2: how do we actually allocate?

> —— FasterTransformer —»— QOrca (Max) Orca (Pow?2) —a— QOrca (Oracle) —e— VLLM
O
g 1.0 1.0 1.0
C —~
S O
gg 05 l ’/J 0.5 /J J 0.5 / Z/:/J
© E)
€~ 0.0 0.0 am—
o 0.0 0.0 0.4 : : .
= Request rate req/s Request rate (req/s) Request rate (req/s)

(a) OPT-13B, 1 GPU, ShareGPT (b) OPT-66B, 4 GPUs, ShareGPT (c) OPT-175B, 8 GPUs, ShareGPT
>
O
C
Q 1.0 1.0 1.0
C —~
o @ /I }
-&)ié 0.5 O.S-J 0.5
© &)
€~ 0.0- . *—"é—*"} - 0.0 ' e - 0.0+ - . ' -
o 0 10 20 30 0 5 10 15 20 0 5 10 15 20
= Request rate (req/s) Request rate (req/s) Request rate (req/s)

(d) OPT-13B, 1 GPU, Alpaca (e) OPT-66B, 4 GPUs, Alpaca (f) OPT-175B, 8 GPUs, Alpaca

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention

https://arxiv.org/abs/2309.06180

Idea 2: get a greater bang for
your bytes by increasing the
batch size

A first idea: naively take requests and run
them through the model

What should | name my pet rock?

What happens when the request is done?

What should | name my pet rock?

Batched LLM processing keeps these
sequences idle, as the request latency
becomes the maximum of all sequences in

the batch.

What happens when the request is done?

What should | name my pet rock?

There's room for more requests...but we can’t serve them.
IMPORTANT QUESTIONS CAN'T GET ANSWERED!

A better idea: exploit iterations

Introduce the Orca scheduler
1. Select the requests to run
next.

E

What should | name my pet rock?

A better idea: exploit iterations

What should | name my pet rock?

Introduce the Orca scheduler
1. Select the requests to run
next.

A better idea: exploit iterations

model-Forwardinput—3ds) model.run _step(ids)

What should | name my pet rock?

Introduce the Orca scheduler

2. Run an iteration of the engine

A better idea: exploit iterations

What should | name my pet rock?

Introduce the Orca scheduler

3. Receilve execution results

A better idea: exploit iterations

What should | name my pet rock?

Introduce the Orca scheduler
1. Select the requests to run
next.

A better idea: exploit iterations

What should | name my pet rock?

Introduce the Orca scheduler

2. Run an iteration of the engine

A better idea: exploit iterations

KV cache evicted

- GPU memory freed

Introduce the Orca scheduler

3. Receilve execution results

A better idea: exploit iterations

Introduce the Orca scheduler
1. Select the requests to run
next.

Iteration level batching is a lot faster

e Reduced waiting time for a given request
e High GPU utilization from large batch sizes
e | ess wasted computation from padding within a simple

ldea 3: speed up decoding by
trying to decode more tokens In
parallel

What if we decoded several tokens in parallel if
the problem is decoding one token at a time?

ldea: train auxiliary models that can predict n tokens instead (not just 1

token ahead)
m

Predict I saw a dog rnde| |[in the| |bus

Model 2 tokens 3 tokens
ahead ahead

Source: Blockwise Parallel Decoding for Deep Autoreqgressive Models

https://arxiv.org/abs/1811.03115

What if we decoded several tokens in parallel if
the problem is decoding one token at a time?

ldea: train auxiliary models that can predict n tokens instead (not just 1

token ahead)
m

Predict I saw a dog rnde| |[in the| |bus

Model 2 tokens 3 tokens
ahead ahead

Verify I saw a dog ride| 1in v A
~ A
I saw a dog ride ' in the v >i§X§ ;;l;ﬁgl
I = ™\
I saw a dog ride ' 1In the | car X y

Source: Blockwise Parallel Decoding for Deep Autoreqgressive Models

https://arxiv.org/abs/1811.03115

What if we decoded several tokens in parallel if

the problem is decoding one token at a time?

ldea: train auxiliary models that can predict n tokens instead (not just 1

token ahead)

Predict

Verify

Accept

= . .

saw a dog

ride

Model 2 tokens 3 tokens
ahead ahead

/"—\

saw a dog

saw a dog

saw a dog

ride | 1n ;oo

= executed

ride ' | the v >in parallel
| /—_\

ride ' in the | car X)

Saw a dog

ride n the

Source: Blockwise Parallel Decoding for Deep Autoreqgressive Models

https://arxiv.org/abs/1811.03115

Why does this make sense?

Decoding several tokens at once reduces the
number of forward passes that need to be ran

FLOPS time, per (>1) output tOV Memory load time (from before)

Total FLOPs: 2 * 70e9 * 32 x 1 ~= 4.48e12 Total bytes: 2 * 70e9 = 140e9

So total time is: So total load time is:

4.48e12 FLOPs / (8 * 312e12 FLOPs/sec) = 140e9 bytes / (8 * 1.5e12 bytes /
0.001s sec) ~= 0.01s

Results

Wall-Clock
Model Source BLEU Speedup
Transformer (beam size 4) Vaswani et al. (2017) 28.4
Transformer (beam size 1) Gu et al. (2018) 22.71
Transformer (beam size 4) Gu et al. (2018) 23.45
Non-autoregressive Transformer Gu et al. (2018) 17.35
Non-autoregressive Transformer (+FT) Gu et al. (2018) 17.69
Non-autoregressive Transformer (+FT + NPD s = 10) Gu et al. (2018) 18.66
Non-autoregressive Transformer (+FT + NPD s = 100) Gu et al. (2018) 19.17
Transformer (beam size 1) Lee et al. (2018) 23.77 1.20x
Transformer (beam size 4) Lee et al. (2018) 24.57 1.00x
Iterative refinement Transformer (igec = 1) Lee et al. (2018) 13.91 11.39x
Iterative refinement Transformer (24ec = 2) Lee et al. (2018) 16.95 8.77x
Iterative refinement Transformer (24ec = 5) Lee et al. (2018) 20.26 3.11x
Iterative refinement Transformer (24gec = 10) Lee et al. (2018) 21.61 2.01x
Iterative refinement Transformer (Adaptive) Lee et al. (2018) 21.54 2.39x
Latent Transformer without rescoring Kaiser et al. (2018) 19.8
Latent Transformer rescoring top-10 Kaiser et al. (2018) 21.0
Latent Transformer rescoring top-100 Kaiser et al. (2018) 22.5
Transformer with distillation (greedy, £ = 1) This work 29.11 1.00x
Blockwise parallel decoding for Transformer (k = 2) This work 28.95 1.72x
Blockwise parallel decoding for Transformer (k = 4) This work 28.54 2.69x
Blockwise parallel decoding for Transformer (k = 6) This work 28.11 3.10x
Blockwise parallel decoding for Transformer (k = 8) This work 27.88 3.31x
Blockwise parallel decoding for Transformer (k = 10) This work 27.40 3.04x

Source: Blockwise Parallel Decoding for Deep Autoreqgressive Models

https://arxiv.org/abs/1811.03115

Take 2: training these are expensive, and
not that accurate, so let’s try another model

Big Model

I'm really fast and small right

A cheap small model generates tokens

Take 2: training these are expensive, and
not that accurate, so let’s try another model

Big Model I The big model verifies them in parallel

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf

Results

Sampling Method Benchmark Result Mean Token Time Speed Up
0 omaowmn 12 amARS N
S Greedyy XSUmEOUGED 0186 slontmicn 00,
pS (Nuclewsy Humankval 000sho0 L5600 0T)

Source: Accelerating Large Language Model Decoding with Speculative Sampling

https://arxiv.org/pdf/2302.01318.pdf

Adding this makes sense...but not for high batch sizes

== baseline decode tok/sec == spec dec decode tok/sec medusa decode tok/sec

8000.00

in o FLOPs go up but...

e You're doing k times as much
work, and at batch size b, an
effective batch size of k * b might
bring you into the compute
bound regime

e And that lots of that work is
wasted, since you might be
wrong

6000.00

4000.00

Total Decoding Throughput [tok/sec]

2000.00

0.00 25.00 50.00 75.00

Decoding Pace [ms/tok/user]

Credit: Abhi Venigalla

